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ABSTRACT

Feedback from the previous year’s very successful workshop
motivated the organisation of a three-day workshop from
1 to 3 February 2016, during which the 28-rack JUQUEEN
Blue Gene/Q system with 458 752 cores was reserved for over
50 hours. Eight international code teams were selected to
use this opportunity to investigate and improve their ap-
plication scalability, assisted by staff from JSC Simulation
Laboratories and Cross-Sectional Teams.

Ultimately seven teams had codes successfully run on the
full JUQUEEN system. Strong scalability demonstrated by
Code_Saturne and Seven-League Hydro, both using 4 OpenMP
threads for 16 MPI processes on each compute node for a to-
tal of 1835008 threads, qualify them for High-Q Club mem-
bership. Existing members CIAO and iFETI were able to
show that they had additional solvers which also scaled ac-
ceptably. Furthermore, large-scale in-situ interactive visu-
alisation was demonstrated with a CIAO simulation using
458 752 MPI processes running on 28 racks coupled via JU-
SITU to Vislt. The two adaptive mesh refinement utilities,
ICl and pdest, showed that they could respectively scale to
run with 458 752 and 971 504 MPI ranks, but both encoun-
tered problems loading large meshes. Parallel file I/O issues
also hindered large-scale executions of PFLOTRAN. Poor
performance of a NEST-import module which loaded and
connected 1.9 TiB of neuron and synapse data was tracked
down to an internal data-structure mismatch with the HDF5
file objects that prevented use of MPI collective file reading,
which when rectified is expected to enable large-scale neu-
ronal network simulations.

Comparative analysis is provided to the 25 codes in the
High-@Q Club at the start of 2016, which includes five codes
that qualified from the previous workshop. Despite more
mixed results, we learnt more about application file I/O lim-
itations and inefficiencies which continue to be the primary
inhibitor to large-scale simulations.
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1. INTRODUCTION

Exascale computer systems are expected to require one
or two orders of magnitude more parallelism than the cur-
rent leadership computer systems [1]. The current top ten
computer systems each have more than 256k physical cores,
and when exploiting hardware threading capabilities most
of these can run over one million concurrent processes or
threads. Jiilich Supercomputing Centre (JSC) has almost
a decade of experience with the range of IBM Blue Gene
systems and in scaling HPC applications to use their con-
siderable capabilities effectively in preparation for expected
exascale systems.

From 1 to 3 February 2016, Jiilich Supercomputing Centre
organised the latest edition of its series of IBM Blue Gene
Extreme Scaling Workshops. This series started with the
2006 “Blue Gene/L Scaling Workshop” [2] using the 8-rack
(16 384 cores) JUBL, and then moved to JUGENE for the
2008 “Blue Gene/P Porting, Tuning & Scaling Workshop” [3]
and dedicated “Extreme Scaling Workshops” in 2009 [4],
2010 [5] and 2011 [6]. These latter three workshops attracted
28 teams selected from around the world to investigate scal-
ability on the most massively-parallel supercomputer at the
time with its 294912 cores. 26 of their codes were suc-
cessfully executed at that scale, three became ACM Gor-
don Bell prize finalists, and one participant was awarded an
ACM/IEEE-CS George Michael Memorial HPC fellowship.

Last year’s workshop [7, 8] was the first for the JUQUEEN
Blue Gene/Q [9, 10], and all seven participating applica-
tion teams had within 24 hours successfully ran on all 28
racks (458 752 cores capable of running 1835008 processes
or threads). With their results, five of the codes later joined
the list of High-Q Club [11] codes and one existing member
improved their scalability.

The High-Q Club is a collection of the highest scaling
codes on JUQUEEN (Appendix A) and as such requires the
codes to run on all 28 racks. Codes also have to demonstrate
that they profit from each additional rack of JUQUEEN in



reduced time to solution (speed-up) when strong scaling a
fixed problem size or a tolerable increase in runtime when
weak scaling progressively larger problems (size-up). Fur-
thermore the application configurations should be beyond
toy examples and we encourage use of all available hardware
threads which is often best achieved via mixed-mode pro-
gramming. Each code is then individually evaluated based
on its weak or strong scaling results with no strict limit on
efficiency. Extreme-scaling workshops thus provide an op-
portunity for additional candidates to prove their scalability
and qualify for membership, or — as was the case for some
of the codes this and last year — improve on the scaling and
efficiency that they had already achieved.

The MAXI mini-symposium [12] at the ParCo2015 con-
ference enabled five High-Q Club members (including three
of that year’s workshop participants) to present and discuss
their experience scaling their applications on a variety of the
largest computing systems including Hermit, K computer,
Mira, Piz Daint, Sequoia, Stampede, SuperMUC, Tianhe-2
and Titan. Exchange of application extreme-scaling experi-
ence from these and other leadership HPC computer systems
was also the focus of the full-day aXXLs workshop at the
ISC-HPC conference [13].

Eight international application teams were selected for
this year’s three day workshop, and given dedicated use of
the entire JUQUEEN system for a period of over 50 hours.
Many of the teams’ codes had thematic overlap with JSC
Simulation Laboratories * or were part of an ongoing collab-
oration with one of the SimLabs for Fluids & Solids En-
gineering, Neuroscience, and Terrestrial Systems. While
most of the application teams were experienced users of
JUQUEEN (and other Blue Gene/Q systems), and had suc-
cessfully scaled their application codes previously, additional
time was scheduled and support from JSC Cross-Sectional
Teams was available to do performance analyses and inves-
tigate optimisation opportunities.

The eight participating code teams were:

e CIAO multiphysics, multiscale Navier-Stokes solver for
turbulent reacting flows in complex geometries > [14]
RWTH-ITV Aachen University Inst. for Combustion
Technology, Germany

e Code_Saturne CFD based on the finite volume method
to solve Navier-Stokes equations [15] ®
STFC Daresbury Laboratory, UK

o ICl simulation based on an implicit finite-element for-
mulation including anisotropic mesh adaptation [16] 4

Inst. de Calcul Intensif, Ecole Centrale de Nantes, France

e iFETI implicit solvers for finite-element problems in
nonlinear hyperelasticity € plasticity [17] ®
Universitédt zu Koln and Technische Universitdt Berg-
akademie Freiberg, Germany

e NEST-import module to load neuron and synapse in-
formation into the NEST neural simulation tool [18] 8
Blue Brain Project, Switzerland

"http:/ /www.fz-juelich.de/ias/jsc/simlabs
*http://www.itv.rwth-aachen.de/en/
http://www.code-saturne.org/

“http://ici.ec-nantes.fr/

®part of the FE2TI suite formerly referred to as ex_nl/FE?
Shttp://www.nest-initiative.org/

e plest library for parallel adaptive mesh refinement and
coarsening [19] 7
Universitdt Bonn, Germany

e PFLOTRAN subsurface flow and reactive transport [20] ®
FZJ TEK6/JARA-HPC and AMPHOS?' Consulting
S. L., Spain

e Seven-League Hydro (SLH) astrophysical hydrodynam-
ics with focus on stellar evolution [21] °
Heidelberger Inst. fiir Theoretische Studien, Germany

A summary of workshop results follows, looking at the
employed programming models and languages, code scala-
bility, tools at scale, and parallel I/O. Detailed results for
each code are found in the reports provided by each of the
participating teams [22]. These present and discuss more
execution configurations and scaling results achieved by the
application codes during the workshop.

2. SUMMARY OF RESULTS

Characteristics of the eight workshop codes are summarised
in Table 1 and discussed first, then followed by comparison
of scaling performance.

2.1 Parallel characteristics

Programming languages.

Since Blue Gene/Q offers lower-level function calls for some
hardware-specific features that are sometimes not available
for all programming languages, a starting point is looking at
the languages used. The left of Figure 1 shows a Venn set di-
agram of the programming language(s) used by the High-Q
Club codes. It indicates that all three major programming
languages are equally popular (without considering lines of
code). Of the 8 workshop codes, three are exclusively writ-
ten in Fortran, two only in C++4, one is C, and the other
two combine C with C++4 or Fortran. Portability is ap-
parently important, as hardware-specific coding extensions
are generally avoided. The workshop codes all used IBM’s
XL compiler suite, whereas various High-Q Club applica-
tion codes have preferred GCC or Clang compilers which
offer support for more recent language standards. Most op-
timisations employed by the codes are therefore not specific
to Blue Gene (or BG/Q) systems, but can also be exploited
on other highly-parallel systems.

Farallelisation modes.

The four hardware threads per core of the Blue Gene/Q
chip in conjunction with the limited amount of compute
node memory suggest to make use of multi-threaded pro-
gramming. It is therefore interesting to see whether this is
indeed the preferred programming model and whether the
available memory is an issue. The middle of Figure 1 shows
a Venn set diagram of the programming models used by
High-Q Club codes, revealing that mixed-mode program-
ming does indeed dominate. Looking at the workshop codes
in particular, all eight used MPI, which is almost ubiquitous
for portable distributed-memory parallelisation. dynQCD
is the only High-Q Club application employing lower-level

"http://www.pdest.org/
Shttp://www.pflotran.org/
“http://www.slh-code.org/



Table 1: 2016 Extreme Scaling Workshop code characteristics. Compiler and main programming languages
(excluding external libraries), parallelisation including maximal process/thread concurrency (per compute
node and overall) and strong and/or weak scaling type, and file I/O implementation. (Supported capabilities
unused for scaling runs on JUQUEEN in parenthesis.)

Programming Parallelisation
Code Compiler / Languages | Tasking Threading Concurrency | Scaling | File I/O
CIAO XL: Ftn MPI 16 16: 458752 | S MPI-10, HDF5
Code_Saturne | XL: C Ftn MPI 16 | OpenMP 4 | 64: 1835008 | S MPI-IO
ICI XL: C++ MPI 16 16: 458752 W | MPI-IO
iFETI XL: C C+H++ MPI 32 32: 917504 W | N/A
NEST-import | XL: C++ MPI 1 | OpenMP16 | 16: 458752 | S W | HDF5 (MPI-10)
pdest XL: C MPI 32 32: 917504 N/A (MPI-10)
PFLOTRAN XL: F03 MPI 16 16: 131072 | S HDF5 (SCORPIO)
SLH XL: F95 MPI 16 | OpenMP 4 | 64: 1835008 | S MPI-1IO

Figure 1: Venn set diagrams of programming languages (left) and parallel programming models (middle),
plus a pie-chart showing file I/O (right) used by codes in the High-Q Club.
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used by codes in the High-Q Club (left) and taking part in the workshop (right). The number of resulting
hardware threads used on each compute node is shown in red.

machine-specific SPI for maximum performance. Five of the
workshop codes exclusively used MPI for their scaling runs,
both between and within compute nodes, accommodating to
the restricted per-process memory. pdest has started test-
ing the use of MPI-3 shared memory functionality, which is
expected to save memory when running multiple MPI pro-
cesses on each compute node. The remaining three workshop
codes employ OpenMP multi-threading to exploit compute

node shared memory in conjunction with MPI, as do the
majority of High-Q Club applications. Instead of OpenMP,
three of the High-Q Club applications prefer POSIX thread-
ing for additional control.

File 1/0.
The right of Figure 1 shows a pie-chart breakdown of the

1/0 libraries used by High-Q Club codes, although in most



cases writing output and in some cases reading input files
was disabled for their large-scale executions and synthesised
or replicated data used instead. Unfortunately, I/O usage
by over 40% of High-Q Club was not provided with their
submissions for membership indicating that file I/O has not
yet received the required attention. Whereas half of the
codes in the workshop can use MPI-I/O directly, only 10% of
club members stated that they can do so. One quarter of the
High-Q Club codes can use either (p)HDF5 or (p)NetCDF,
despite their often disappointing performance as seen during
the workshop. 20% of High-Q Club codes have migrated
to using SIONIib [28] for effective parallel 1/O, but only a
couple of workshop codes have started this.

Concurrency.

Figure 2 shows the relation between the number of MPI
ranks and threads per compute node where this information
was available for High-Q Club (left) and workshop (right)
codes. On either side of each diagram are the two extremes
of exclusively using a distributed or shared memory ap-
proach within a node, so at most all 64 hardware threads
on each CPU with either 64 processes or 64 threads. The
charts show the number of processes on each compute node
with downward bars while the associated number of threads
is indicated with the bars extending upwards. Included in
red hatching is the resulting number of hardware threads
used by the code, i.e., the node concurrency. High-Q Club
member codes often seem to benefit from using more hard-
ware threads than physical cores and therefore favour this
configuration. For others, such as NEST (and NEST-import),
making full use of the available compute node memory for
simulations is more important than full exploitation of pro-
cessor cores and hardware threads. Using lower precision is
occassionally exploited to reduce memory requirements and
improve time to solution of large-scale simulations, however,
larger PFLOTRAN simulations were prevented by its use of
32-bit (rather than 64-bit) integer indices. The two work-
shop codes Code Saturne and SLH which qualified to join
the High-Q Club similarly exploit all hardware threads by
combining MPI4+OpenMP, whereas none of the codes using
purely MPI managed to this time.

2.2 Weak and strong scaling and performance

Here we show an overview of the scaling results achieved
during the workshop. We compare strong (fixed total prob-
lem size) and weak (fixed problem size per process or thread)
scaling, put in context of the scalability results from other
codes in the High-Q Club.

Figures 3 and 4 show strong and weak scaling results of
the workshop codes, including in grey results from a selection
of High-Q Club codes. This indicates the spread in execu-
tion results and diverse scaling characteristics of the codes.
The graphs show six of the workshop codes managing to
run on the full JUQUEEN system, and most achieved good
scalability. péest scalability is not included as it had execu-
tion times of only a couple of seconds. Note that in many
cases the graphs do not have a common baseline of a single
rack since datasets sometimes did not fit available memory
or no measurement was provided for 1024 compute nodes:
for strong scaling an execution with a minimum of seven
racks (one quarter of JUQUEEN) is therefore accepted for
a baseline measurement, with perfect scaling assumed from
a single rack to the baseline.
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Figure 3: Strong scaling results of the workshop
codes with results from existing High-Q Club mem-
bers included in light grey.
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Figure 4: Weak scaling results of the workshop codes
with results from existing High-Q Club members in-
cluded in light grey.

In Figure 3 almost ideal strong-scaling speed-up of 27x on
28 racks is achieved by CIAO (in both configurations tested,
like its previous High-Q Club entry), whereas Code_Saturne
only shows a 19x speed-up. SLH speed-up is somewhere in
between for the two problem sizes and run configurations
measured. dynQCD stands-out with superlinear speed-up
of 52x, due to its exceptional ability to exploit caches as
problem size per thread decreases, whereas ICON achieved
only a modest 12x speed-up.

PFLOTRAN managed to run on up to 8 racks before file
1/0 became prohibitive, but showed reasonable scalability of
the solver for sufficiently large problem sizes. NEST-import
ran successfully on all 28 racks, but only reached a scalability
of 7x (probably largely due to its increasingly inefficient non-
collective file reading and all-to-all redistribution).

In Figure 4, the weak scaling efficiency of IciMesh is a
respectable 87% with 28 racks (though the largest measure-
ment comes from a somewhat different problem configura-
tion), whereas the new iFETI solver at only 69% scales con-
siderably less well than their current High-Q Club FE2TI
solver with 99%. muPhi was able to achieve 102% effi-
ciency on 28 racks compared with a single rack, whereas
JURASSIC only managed 68% efficiency due to excessive I/O
for the reduced-size test case. Various codes show erratic
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Figure 5: Scalasca analysis report explorer views of import_synapses extract of a Score-P measurement profile
from NEST-import execution on all 28 racks of JUQUEEN (28 672 MPI ranks each with 16 OpenMP threads).
The upper-left view shows 21% of time is in MPI_File_read_at, when loading 1.9 TiB of HDF5 neuron and
synapse data in six parts (174 calls). Reading time by rank varies from 1.07 to 86.06 seconds, resulting in up
to 85 seconds of waiting within the subsequent synchronising collective MPI_Alltoall (upper-right), as part
of the 120 seconds each rank takes to load and redistribute the data. The lower views show time in the
subsequent connect step ranging from 4.14 to 52.62 seconds, where some threads wait up to 48 seconds in the

implicit barrier closing the OpenMP parallel region.

scaling performance, most likely due to topological effects,
e.g. SHOCK is characterised by particularly poor configura-
tions with an odd number of racks in one dimension (i.e. 3,
5and 7). Similarly, OpenTBL shows marked efficiency drops
for non-square numbers of racks (8 and 28).

2.3 Tools at scale

The community-developed Score-P instrumentation and
measurement infrastructure [25] employed by Scalasca [26]
was used to profile NEST-import. Since automatic compiler
instrumentation of all routines in C++ applications typi-
cally results in prohibitive measurement overheads, instead
manual annotation of the relevant code regions was used to
augment the instrumentation of OpenMP and MPI. An ex-
ample profile from an execution on all 28-racks of JUQUEEN
(28 672 MPI ranks each with 16 OpenMP threads, for 458 752
in total) is shown in Figure 5. Substantial time and imbal-
ance in MPI file I/O and the main OpenMP parallel region
are evident. The former was subsequently identified as origi-
nating from a mismatch between the module’s data structure
and the HDF'5 file objects which resulted in use of individual
MPI file I/O.

While Score-P does not yet support POSIX file I/O or
provide measurements of the number of bytes read or writ-
ten, Darshan [27] was available for this. Darshan problems
with Fortran codes using MPI on JUQUEEN required a link-
ing workaround, which worked for CIAO but not for PFLO-
TRAN, and the C++ codes ICl and iFETI also reported is-

sues (whereas NEST-import was successful). A revised set
of Darshan linking wrappers have been developed which are
expected to resolve these problems.

2.4 Parallel I/0

File I/O performance is a critical scalability constraint
for many large-scale parallel applications which need to read
and write huge datasets or open a large number of files. Half
of the workshop codes used MPI file I/O directly, whereas
others (e.g. NEST-import) use it indirectly via HDF5. Addi-
tionally, pdest can use MPI file I/O but did not for the runs
during the workshop.

Code_Saturne used MPI collective file I/O effectively to
read 618 GiB of mesh input data, however, writing of sim-
ulation output was disabled as this was a known bottle-
neck. The NEST-import module read 1.9 TiB of HDF5 neu-
ron and synapse data but only attained a fraction of the
GPFS filesystem bandwidth. Internal data structures are
currently being adapted to be able to exploit MPI collective
file reading, which is expected to significantly out-perform
the current MPI individual/independent file reading and
should enable large-scale data-driven neuronal network sim-
ulations in future. SLH compared writing 264 GiB of astro-
physical simulation output using MPI-IO to a single file or
using C stdio to separate files for each MPI process. Writ-
ing many process-local files is impractical as it requires all
of the files to be created on disk in advance, to avoid filesys-
tem meta-data issues, and an expensive post-processing to



aggregate the output into a single file for subsequent use.

While IciMesh was able to generate an adapted mesh with
over 100 billion elements using 458 752 MPI ranks on all 28
racks of JUQUEEN, the associated solver IciSolve was lim-
ited to 65536 MPI ranks due to problems uncovered with
their use of MPI individual/independent file I/O to read
their 1.7 TiB mesh files. The parallel adaptive mesh refine-
ment code pdest demonstrated generation, refinement and
partitioning, managing in-core meshes with up to 940 bil-
lion elements in 21 seconds using 917 504 MPI ranks on 28
JUQUEEN racks. In a test case with a larger coarse mesh,
memory was the limiting factor for broadcasting data from a
single MPI rank to the others. HDF5 file I/O also presented
an insurmountable scalability impediment for PFLOTRAN,
particularly for larger problem sizes and with more than ten
thousand MPI processes.

All of the above is evidence that file I/O is critical and
needs the appropriate attention by the programmer and
the right methods to perform I/O. At JSC, SIONIib [28§]
has been developed to address file I/O scalability limita-
tions. It has been used effectively by three High-Q codes
(KKRnano, MP2C and muPhi) and several other applications
are currently migrating to adopt it (e.g., NEST and SLH).
SIONIib is highly optimized for task-local 1/O patterns on
massively parallel architectures. For example, with SION-
lib on JUQUEEN applications are able to achieve an I/O
bandwidth of more than 100 GiB/s using a virtual shared
file container and techniques for accessing the container ef-
ficiently. The latter involve file system block alignment and
the separation of I/O-streams by creating one physical file
per I/O-bridge node of the Blue Gene/Q system [29].

Apart from specifying a GPFS filesystem type, additional
hints for MPI-IO were not investigated by these applica-
tions. CIAO experimented with various MPI-IO (ROMIO)
hints, but did not observe any benefit when writing single
9TiB files with MPI file I/O. Whether the parameters have
no effect due to the MPI implementation on JUQUEEN is
still under investigation, but it is well known that reading
and writing single shared files fails to exploit the available
filesystem bandwidth.

2.5 In-situ visualisation

Large amounts of application file I/O can be avoided via
methods for in-situ visualization of large simulations devel-
oped within JARA-HPC ! to allow easy and fast control
of large simulations and reduce the amount of data which
needs to be stored [23]. More precisely, the coupling layer
JUSITU ™ has been implemented and coupled to CIAO and
Vislt [24]. A compressible, turbulent channel (Reynolds
number 13 760) containing small droplets (described by an
Eulerian indicator function) was the chosen test case for
the workshop. Figure 6 shows a screenshot of the full 28-
rack JUQUEEN run. It visualizes the simulation state after
running for 9 units of simulation time. Beside the Vislt
overview window (on the left), Window ! showing a his-
togram of the pressure, Window 2 visualizing the turbulent
kinetic energy within the channel, the Compute engines win-
dow giving information about the simulation on JUQUEEN,
and the Simulation window allowing to give instructions to
the simulation are visible.

http://www.jara.org/en/research/jara-hpc/
"https://gitlab.version.fz-juelich.de/vis/jusitu

2.6 Miscellany

The workshop participants were all associated with active
projects on JUQUEEN, which allowed them to prepare their
codes and datasets in advance of the workshop. The most
successful teams were very familiar with their codes, able
to build and run them in different configurations, and had
also prepared performance profiles and analysis reports for
examination.

Many of the workshop participants’ codes used popular
libraries such as HDF5 and PETSc. This facilitated discus-
sion and exchange of experience, despite apparent favouring
of different library versions and configurations (which were
often customised rather than relying on the system installed
versions).

All of the workshop accounts were part of the training
group sharing the provided compute-time allocation and file-
system quota. When one team exceeded the 200 TiB group
quota, by forgetting to remove test files at the end of their
jobs, this temporarily resulted in compilation and execution
failures for the other participants. Over the 50 hours of
the workshop, 3500 TiB was read and 124 TiB was written
in total between applications and the I/O nodes, with the
largest jobs reading 330 TiB and writing 15 TiB respectively.
Maximum bandwidths recorded over one minute intervals
was 700 GiB/s for reading and 18 GiB/s for writing. Despite
the considerable load on the GPFS file-system from large-
scale parallel jobs doing file I/O during the workshop, the
only issue encountered was variable performance.

LLview was invaluable for monitoring the current use of
JUQUEEN (Figure 7), additionally showing job energy con-
sumption and file I/O performance, while real-time account-
ing of jobs during the workshop facilitated tracking of re-
source usage by each participant. LoadLeveler job schedul-
ing quirks were avoided by deft intervention from sysad-
mins closely monitoring JUQUEEN during the workshop
(day and night). 43 jobs were run on all 28 racks, 15 on
24 racks, 13 on 20 racks, as well as 90 jobs with 16 racks,
consuming a total of 15.4 million core-hours.

At the start of the workshop, two defective nodeboards
limited initial scaling tests to 24 racks for the first 24 hours,
but after their replacement 28-rack jobs were quickly tested
by most teams. No additional hardware failures were en-
countered during the workshop.

Given the demanding nature of the workshop, consider-
able flexibility is essential, both from participants and their
test cases and regarding scheduling of breaks, sessions and
system partitions. Physical presence of at least one member
of each code team in the classroom for the workshop is there-
fore necessary for rapid communication. This proved espe-
cially the case given the mix of proven highly-scaling codes
(often needing the entire compute resource) and the need for
smaller-scale tests to investigate problems and verify solu-
tions. The physical configuration of JUQUEEN makes the
workshop particularly unsuited to small-scale tests with long
execution times.

3. CONCLUSIONS

The variety of codes and participants, from different but
often related subject areas as well as different institutions
and countries, combined with similarly diverse support staff,
contributes to the intense yet highly productive nature of
JSC Extreme Scaling Workshops which have the goal of
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proving and improving the ability of applications to exploit
current and forthcoming extremely large and complex high-
performance computer systems.

The High-Q Club documents codes from a wide range
of HPC application fields demonstrating effective extreme-
scale execution on the JUQUEEN Blue Gene/Q, generally
with only modest tuning effort. This year’s Extreme Scal-
ing Workshop identified two additional codes which qual-
ify for membership, Code_Saturne and Seven-League Hydro,
both scaling to 1.8 million threads. Standard programming
languages and MPI combined with multi-threading are suffi-
cient, and provide a straightforward migration path for ap-
plication developers which has also delivered performance
and scalability benefits on diverse HPC computer systems
(including K computer, Cray systems and other clusters).
Similar ease-of-use and reliability of well-established homo-
geneous Blue Gene/Q systems probably cannot be expected
to be representative of the current and future generations
of heterogeneous HPC systems, however, we believe it is a
worthwhile target.

The High-Q Club reflects how users of JUQUEEN manage
to achieve their goals, irrespective of other approaches which
may be available. Several alternatives to MPI and OpenMP
are actively researched at JSC and also promoted or avail-
able on JUQUEEN, however, the High-Q Club can only
document what has been used successfully without knowing
reasons for possible failures, readiness of alternatives, or any
work in progress on the respective codes. Similarly, it does
not allow to identify particularly efficient codes in terms of
peak performance or a better time to solution for a given
problem. Only simple comparative metrics like speed-up or
efficiency on JUQUEEN can be assessed for several reasons:
we rely on measurements that users provide, and they solve
very different problems from many different scientific fields.

Whereas previously application codes have tended to avoid
doing file I/O in their scaling runs, disabling outputs and
using replicated or synthesised input data, this year’s work-
shop participants were encouraged to thoroughly analyse
their applications’ I/O requirements and address limitations.
Performance analysis of the NEST-import module for the
neuronal network simulator identified individual MPI file
reads resulting from an internal data-structure definition
mismatch with the HDF5 file objects that prevented use
of much more efficient MPI collective file reads. Also in-
situ interactive visualisation of a CIAO CFD simulation with
458 752 MPI processes running on 28 racks demonstrated a
viable alternative to file I/O that is expected to be an essen-
tial capability for the coming generation of simulations and
expected exascale systems.
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APPENDIX

A. HIGH-Q CLUB CODES

The full description of the High-Q Club codes along with
developer and contact information can be found on the WWW
[11]. Before this year’s workshop at the start of 2016, there
were 25 member codes:

CIAO multiphysics, multiscale Navier-Stokes solver for tur-
bulent reacting flows in complex geometries
RWTH-ITV & Sogang University

CoreNeuron simulation of electrical activity of neuronal net-
works including morphologically detailed neurons
EPFL Blue Brain Project

dynQCD lattice quantum chromodynamics with dynamical
fermions
JSC SimLab Nuclear and Particle Physics & Bergische
Universitdt Wuppertal

FE2TI scale-bridging incorporating micro-mechanics in macro-
scopic simulations of multi-phase steels
Universitit zu Koln & TUB Freiberg

FEMPAR massively-parallel finite-element simulation of multi-
physics governed by PDFEs
UPC-CIMNE

Gysela gyrokinetic semi-Lagrangian code for plasma turbu-
lence simulations
CEA-IRFM Cadarache

ICON icosahedral non-hydrostatic atmospheric model
DKRZ & JSC SimLab Climate Science



Table 2: High-Q Club member application code characteristics. Compiler and main programming languages
(excluding external libraries), parallelisation including maximal process/thread concurrency (per compute
node and overall) and strong and/or weak scaling type, and file I/O implementation. (Supported capabilities

unused for scaling runs on JUQUEEN in parenthesis.)

Programming Parallelisation
Code Compiler / Languages | Tasking Threading Concurrency | Scaling | File I/O
CIAO XL: Ftn | MPI 16 16: 458752 | S MPI-10, HDF5
CoreNeuron XL: C C++ MPI 1 | OpenMP 64 | 64: 1835008 | S W | MPI-IO
dynQCD XL: C SPI 1 | pthreads 64 | 64: 1835008 | S unspecified
FE2TI XL: C C++ MPI 16 | OpenMP 4]64: 1835008 | S W | N/A
FEMPAR XL: F08 | MPI 64 | (OpenMP) 64: 1756 001 W | N/A
Gysela XL: C F90 | MPI OMP+pthrd 64: 1835008 W | (HDF5)
ICON XL: C Ftn | MPI 1 | OpenMP 64 | 64: 1835008 | S (netCDF)
IMD XL: C MPI 64 | (OpenMP) 64: 1835008 W | unspecified
JURASSIC XL: C MPI 32 | OpenMP 2 | 64: 1835008 W | netCDF
JuSPIC GCC: F90 | MPI 4 | OpenMP 16 | 64: 1835008 | S MPI-IO, POSIX
KKRnano XL: F03 | MPI 4 | OpenMP 16 | 64: 1835008 | S SIONlib
LAMMPS-DCM | XL: C++ MPI 4 | OpenMP 16 | 64: 1835008 | S W | N/A
MP2C XL: Ftn | MPI 32 32: 917504 W | SIONlib
muPhi (u¢) XL: C++ MPI 32 32: 917504 W | SIONlib
Musubi XL: F03 | MPI OpenMP 32: 917504 | S W | N/A
NEST XL: C++ MPI 2 | OpenMP 8 | 16: 458752 W | (SIONIib)
OpenTBL XL: F03 | MPI OpenMP 64: 1835008 W | pHDF5
PEPC GCC: C F03 | MPI 1 | pthreads 61 | 61: 1744992 W | (SIONlib,MPI-10)
PMG+PFASST | XL: C F03 | MPI 16 | (pthreads) 16: 458752 | S N/A
PP-Code XL: F90 | MPI OpenMP 64: 1835008 | S W | unspecified
psOpen XL: F90 | MPI 32 | OpenMP 2 | 64: 1835008 | S pHDF5
SHOCK XL: C MPI 64 64: 1835008 | S W | (cgns/HDF5)
TERRA-NEO XL: C++ Ftn | MPI OpenMP 64: 1835008 W | unspecified
wal Berla XL: C++ MPI OpenMP 64: 1835008 W | N/A
ZFS Clang: C++ MPI 16 | OpenMP 2 |32: 917504 | S (pNetCDF)

IMD classical molecular dynamics simulations
Ruhr-Universitdt Bochum & JSC SimLab Molecular
Systems

JURASSIC solver for infrared radiative transfer in the Earth’s
atmosphere
JSC SimLab Climate Science

JuSPIC fully relativistic particle-in-cell code for plasma physics
and laser-plasma interaction
JSC SimLab Plasma Physics

KKRnano Korringa-Kohn-Rostoker Green function code for
quantum description of mano-materials in all-electron
density-functional calculations
FZJ-IAS

LAMMPS(DCM) a Dynamic Cutoff Method for the Large-
scale Atomic/Molecular Massively Parallel Simulator
for classical molecular dynamics simulations
RWTH-AICES

MP2C massively-parallel multi-particle collision dynamics
for soft matter physics and mesoscopic hydrodynamics
JSC SimLab Molecular Systems

g (muPhi) modelling & simulation of water flow and solute
transport in porous media, algebraic multi-grid solver
Universitédt Heidelberg

Musubi multi-component Lattice Boltzmann solver for flow
simulations
Universitat Siegen

NEST large-scale simulations of biological neuronal networks
FZJ/INM-6 & IAS-6

OpenTBL direct numerical simulation of turbulent flows
Universidad Politécnica de Madrid

PEPC tree code for N-body simulations, beam-plasma in-
teraction, vorter dynamics, gravitational interaction,
molecular dynamics simulations
JSC SimLab Plasma Physics

PMG+PFASST space-time parallel solver for systems of ODFEs
with linear stiff terms, e.g. from discretisations of PDEs
LBNL, Universitdt Wuppertal, Universita della Svizzera
italiana & JSC

PP-Code simulations of relativistic and non-relativistic as-
trophysical plasmas
University of Copenhagen

psOpen direct numerical simulation of fine-scale turbulence
RWTH-ITV Inst. for Combustion Technology & JARA

SHOCK structured high-order finite-difference kernel for com-
pressible flows
RWTH Shock Wave Laboratory

TERRA-NEO modelling and simulation of Earth mantle dy-
namics
Universitidt Erlangen-Niirnberg, LMU & TUM

walBerla Lattice-Boltzmann method for simulation of fluid
scenarios
Universitdt Erlangen-Niirnberg

ZFS computational fluid dynamics € aero-acoustics, conju-
gate heat transfer, particulate flows
RWTH Fluid Mechanics and Inst. of Aerodynamics &
JSC SimLab Fluids and Solids Engineering



